
3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 1 of 34http://herbsutter.com/welcome-to-the-jungle/

Welcome to the Jungle

In the twilight of Moore’s Law, the transitions to multicore processors, GPU com-
puting, and HaaS cloud computing are not separate trends, but aspects of a single

trend – mainstream computers from desktops to ‘smartphones’ are being permanent-
ly transformed into heterogeneous supercomputer clusters. Henceforth, a single com-
pute-intensive application will need to harness different kinds of cores, in immense

numbers, to get its job done.

The free lunch is over. Now welcome to the hardware jungle.

From 1975 to 2005, our industry accomplished a phenomenal mission: In 30
years, we put a personal computer on every desk, in every home, and in
every pocket.

In 2005, however, mainstream computing hit a wall. In “The Free Lunch Is
Over” (December 2004), I described the reasons for the then-upcoming in-
dustry transition from single-core to multi-core CPUs in mainstream ma-
chines, why it would require changes throughout the software stack from
operating systems to languages to tools, and why it would permanently af-
fect the way we as software developers have to write our code if we want

our applications to continue exploiting
Moore’s transistor dividend.

In 2005, our industry undertook a new
mission: to put a personal parallel supercomputer on every desk, in every home,
and in every pocket. 2011 was special: it’s the year that we completed the
transition to parallel computing in all mainstream form factors, with the ar-
rival of multicore tablets (e.g., iPad 2, Playbook, Kindle Fire, Nook Tablet)
and smartphones (e.g., Galaxy S II, Droid X2, iPhone 4S). 2012 will see us
continue to build out multicore with mainstream quad- and eight-core
tablets (as Windows 8 brings a modern tablet experience to x86 as well as
ARM), and the last single-core gaming console holdout will go multicore (as

http://www.gotw.ca/publications/concurrency-ddj.htm

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 2 of 34http://herbsutter.com/welcome-to-the-jungle/

Nintendo’s Wii U replaces Wii).

This time it took us just sixyears to deliver mainstream parallel computing in
all popular form factors. And we know the transition to multicore is perma-
nent, because multicore delivers compute performance that single-core can-
not and there will always be mainstream applications that run better on a
multi-core machine. There’s no going back.

For the first time in the history of computing, mainstream hardware is no
longer a single-processor von Neumann machine, and never will be again.

That was the first act.

Overview: Trifecta

It turns out that multicore is just the first of three related permanent transi-
tions that layer on and amplify each other.

1. Multicore (2005-). As above.

2. Heterogeneous cores (2009-). A single computer already typically includes
more than one kind of processor core, as mainstream notebooks, consoles,
and tablets all increasingly have both CPUs and compute-capable GPUs. The

http://e3.nintendo.com/hw/#/about
http://herbsutter.files.wordpress.com/2011/12/image27.png

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 3 of 34http://herbsutter.com/welcome-to-the-jungle/

open question in the industry today is not whether a single application will
be spread across different kinds of cores, but only “how different” the cores
should be – whether they should be basically the same with similar instruc-
tion sets but in a mix of a few big cores that are best at sequential code plus
many smaller cores best at running parallel code (the Intel MIC model slated
to arrive in 2012-2013, which is easier to program), or cores with different ca-
pabilities that may only support subsets of general-purpose languages like C
and C++ (the current Cell and GPGPU model, which requires more complex-
ity including language extensions and subsets).

Heterogeneity amplifies the first trend (multicore), because if some of the
cores are smaller then we can fit more of them on the same chip. Indeed,
100x and 1,000x parallelism is already available today on many mainstream
home machines – for programs that can harness the GPU.

We know the transition to heterogeneous cores is permanent, because differ-
ent kinds of computations naturally run faster and/or use less power on dif-
ferent kinds of cores – including that different parts of the same application
will run faster and/or cooler on a machine with several different kinds of
cores.

3. Elastic compute cloud cores (2010-). For our purposes, “cloud” means
specifically “hardware (or infrastructure) as a service” (HaaS) – delivering
access to more computational hardware as an extension of the mainstream
machine. This started to hit the mainstream with commercial compute cloud
offerings from Amazon Web Services (AWS), Microsoft Azure, Google App
Engine (GAE), and others.

Cloud HaaS again amplifies both of the first two trends, because it’s funda-
mentally about deploying large numbers of nodes where each node is a
mainstream machine containing multiple and heterogeneous cores. In the
cloud, the number of cores available to a single application is scaling fast
(e.g., in summer 2011, Cycle Computing delivered a 30,000-core cloud for

http://www.intel.com/technology/architecture-silicon/mic/index.htm
http://blog.cyclecomputing.com/2011/09/new-cyclecloud-cluster-is-a-triple-threat-30000-cores-massive-spot-instances-grill-chef-monitoring-g.html

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 4 of 34http://herbsutter.com/welcome-to-the-jungle/

under $1,300/hour, using AWS) and the same heterogeneous cores are avail-
able in compute nodes (e.g., AWS already offers “Cluster GPU” nodes with
dual nVIDIA Tesla M2050 GPU cards, enabling massively parallel and mas-
sively distributed CUDA applications).

In short, parallelism is not just in full bloom, but increasingly in full variety.

This article will develop four key points:

1. Moore’s End. We can observe clear evidence that Moore’s Law is end-
ing, because we can point to a pattern that precedes the end of exploit-
ing any kind of resource. But there’s no reason to panic, because
Moore’s Law limits only one kind of scaling, and we have already start-
ed another kind.

2. Mapping one trend, not three. Multicore, heterogeneous cores, and
HaaS cloud computing are not three separate trends, but aspects of a
single trend: putting a personal heterogeneous supercomputer cluster on
every desk, in every home, and in every pocket.

3. The effect on software development. As software developers, we will
be expected to enable a single application to exploit a “jungle” of enor-
mous numbers of cores that are increasingly different in kind (special-
ized for different tasks) and different in location (from local to very re-
mote; on-die, in-box, on-premises, in-cloud). The jungle of heterogeneity
will continue to spur deep and fast evolution of mainstream software
development, but we can predict what some of the changes will be.

4. Three distinct near-term stages of Moore’s End. And why “smart-
phones” aren’t, really.

Let’s begin with the end… of Moore’s Law.

Mining Moore’s Law

We’ve been hearing breathless “Moore’s Law is ending” announcements for
years. That Moore’s Law will end was never news; every exponential pro-

http://blog.cyclecomputing.com/2011/09/new-cyclecloud-cluster-is-a-triple-threat-30000-cores-massive-spot-instances-grill-chef-monitoring-g.html

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 5 of 34http://herbsutter.com/welcome-to-the-jungle/

gression must. Although it didn’t end when some prognosticators expected,
its end is possible to forecast – we just have to know what to look for, and
that is diminishing returns.

A key observation is that exploiting Moore’s Law is like exploiting a gold
mine or any other kind of resource. Exploiting a gold ore deposit never just

stops abruptly; rather, running a mine
goes through phases of increasing costs
and diminishing returns until finally

the gold that’s left in that patch of ground is no longer commercially ex-
ploitable and operating the mine is no longer profitable.

Mining Moore’s Law has followed the same pattern. Let’s consider its three
major phases, where we are now in transition from Phase II to Phase III. And
throughout this discussion, never forget that the only reason Moore’s Law is
interesting at all is because we can transform its raw resource (more transis-
tors) into a useful form (either greater computational throughput or lower
cost).

Phase I, Moore’s Motherlode = Unicore “Free Lunch” (1975-2005)

When you first find an ore deposit and open a mine, you focus your efforts
on the motherlode, where everybody gets to enjoy a high yield and a low
cost per pound of gold extracted.

For 30 years, mainstream processors mined Moore’s motherlode by using
their growing transistor budgets to make a single core more and more com-
plex so that it could execute a single thread faster. This was wonderful be-
cause it meant the performance was easily exploitable – compute-bound soft-
ware would get faster with relatively little effort. Mining this motherlode in
mainstream microprocessors went through two main subphases as the pen-
dulum swung from simpler to increasingly complex cores:

In the 1970s and 1980s, each chip generation could use most of the extra

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 6 of 34http://herbsutter.com/welcome-to-the-jungle/

transistors to add One Big Feature (e.g., on-die floating point unit, pipe-
lining, out of order execution) that would make single-threaded code
run faster.
In the 1990s and 2000s, each chip generation started using the extra tran-
sistors to add or improve two or three smaller features that would make
single-threaded code run faster, and then five or six smaller features,
and so on.

The figure at right illustrates how the pendulum swung toward increasingly
complex single cores, with three sample chips: the 80286, 80486, and Pentium
Extreme Edition 840. Note that the chips’ boxes are to scale by number of
transistors.

By 2005, the pendulum had swung about as far as it could go toward the
complex single-core model. Although the motherlode has been mostly ex-
hausted, we’re still scraping some ore off its walls in the form of some con-
tinued improvement in single-threaded code performance, but no longer at
the historically delightful exponential rate.

Phase II, Secondary Veins = Homogeneous Multicore (2005-)

As a motherlode gets used up, miners concentrate on secondary veins that
are still profitable but have a more moderate yield and higher cost per

http://herbsutter.files.wordpress.com/2012/01/image.png

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 7 of 34http://herbsutter.com/welcome-to-the-jungle/

pound of extracted gold. So when Moore’s unicore motherlode started get-
ting mined out, we turned to mining Moore’s secondary veins – using the
additional transistors to make more cores per chip. Multicore let us continue
to deliver exponentially increasing compute throughput in mainstream com-
puters, but in a form that was less easily exploitable because it placed a greater
burden on software developers who had to write parallel programs that
could use the hardware.

Moving into Phase II took a lot of work in the software world. We’ve had to
learn to write “new free lunch” applications – ones that have lots of latent
parallelism and so can once again ride the wave to run the same executable
faster on next year’s hardware, hardware that still delivers exponential per-
formance gains but primarily in the form of additional cores. And we’re
mostly there – we have parallel runtimes and libraries like Intel Threading
Building Blocks (TBB) and Microsoft Parallel Patterns Library (PPL), parallel
debuggers and parallel profilers, and updated operating systems to run
them all.

But this time the phase didn’t last 30 years. We barely have time to catch our
breath, because Phase III is already beginning.

Phase III, Tertiary Veins = Heterogeneous Cores (2011-)

As our miners are forced to move into smaller and smaller veins, yields di-
minish and costs rise. Our intrepid miners are trying harder and harder, but
for less reward, by turning to Moore’s tertiary veins: Using Moore’s extra
transistors to make, not just more cores, but also different kinds of cores –
and in very large numbers, because the different cores are often smaller and
swing the pendulum back toward the left.

There are two main categories of heterogeneity.

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 8 of 34http://herbsutter.com/welcome-to-the-jungle/

Big/fast vs. small/slow cores. The smallest amount of heterogeneity is when
all the cores are general-purpose cores with the same instruction set, but
some cores are beefier than others because they contain more hardware to
accelerate execution (notably by hiding memory latency using various forms
of internal concurrency). In this model, some cores are big complex ones that
are optimized to run the sequential parts of a program really fast, while oth-
ers are smaller cores that are optimized to get better total throughput for the
scalably parallel parts of the program. However, even though they use the
same instruction set, the compiler will often want to generate different code;
this difference can become visible to the programmer if the programming
language must expose ways to control code generation. This is Intel’s ap-
proach with Xeon (big/fast) and MIC (small/slow) which both run approxi-
mately the x86 instruction set.

General vs. specialized cores. Beyond that, we see systems with multiple
cores having different capabilities, including that some cores may not be able
to support all of a mainstream language like C or C++: In 2006-2007, with the
arrival of the PlayStation 3, the IBM Cell processor led the way by incorpo-
rating different kinds of cores on the same chip, with a single general-pur-
pose core assisted by eight or more special-purpose SPU cores. Since 2009,

http://herbsutter.files.wordpress.com/2012/01/image1.png

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 9 of 34http://herbsutter.com/welcome-to-the-jungle/

we have begun to see mainstream use of GPUs to perform computation in-
stead of just graphics. Specialized cores like SPUs and GPUs are attractive
when they can run certain kinds of code more efficiently, both faster and
more cheaply (e.g., using less power), which is a great bargain if your work-
load fits it.

GPGPU is especially interesting because we already have an underutilized in-
stalled base: A significant percentage of existing mainstream machines al-
ready have compute-capable GPUs just waiting to be exploited. With the
June 2011 introduction of AMD Fusion and the November 2011 launch of
NVIDIA Tegra 3, systems with CPU and GPU cores on the same chip is be-
coming a new norm. That installed base is a big carrot, and creates an enor-
mous incentive for compute-intensive mainstream applications to leverage
that patiently waiting hardware. To date, a few early adopters have been us-
ing technologies like CUDA, OpenCL, and more recently C++ AMP to har-
ness GPUs for computation. Mainstream application developers who care
about performance need to learn to do the same.

But that’s pretty much it – we currently know of no other major ways to ex-

http://herbsutter.files.wordpress.com/2012/01/temp1.png

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 10 of 34http://herbsutter.com/welcome-to-the-jungle/

ploit Moore’s Law for compute performance, and once these veins are ex-
hausted it will be largely mined out.

We’re still actively mining for now, but the writing on the wall is clear:
“mene mene diminishing returns” demonstrate that we’ve entered the
endgame.

On the Charts: Not Three Trends, but One Trend

Next, let’s put all of this in perspective by showing that multicore, hetero-
core, and cloud-core are not three trends, but aspects of a single trend. To
show that, we have to show that they can be plotted on the same map. Here
is an appropriate map that lets us chart out where processor core architec-
tures are going, where memory architectures are going, and visualize just
where we’ve been digging around in the mine so far:

First we’ll describe each axis, then map out past and current hardware to
spot trends, and finally draw some conclusions about where hardware is
likely to concentrate.

http://herbsutter.files.wordpress.com/2012/01/image2.png

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 11 of 34http://herbsutter.com/welcome-to-the-jungle/

Processor Core Types

The vertical axis shows processor core architectures. From bottom to top,
they form a continuum of increasing performance and scalability, but also of
increasing

restrictions on programs and programmers in the form of additional perfor-
mance issues (yellow) or correctness issues (red) added at each step.

Complex cores are the “big” traditional ones, with the pendulum swung far
to the right in the “habitable zone.” These are best at running sequential
code, including code limited by Amdahl’s Law.

Simple cores are are the “small” traditional ones, toward the left of the “hab-
itable zone.” These are best at running parallelizable code that still requires
the full expressivity of a mainstream programming language.

Specialized cores like those in GPUs, DSPs, and Cell’s SPUs are more limit-
ed, and often do not yet fully support all features of mainstream languages
(e.g., exception handling). These are best for running highly parallelizable
code that can be expressed in a subset of a language like C or C++; for exam-
ple, Xbox Kinect skeletal tracking requires using the CPU and the GPU cores
on the console, and would be impossible otherwise.

The further you move upward on the chart (to the right in the blown-up fig-

http://herbsutter.files.wordpress.com/2011/12/image28.png

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 12 of 34http://herbsutter.com/welcome-to-the-jungle/

ure), the better the performance throughput and/or the less power you
need, but the more the application code is constrained as it has to be more
parallel and/or use only subsets of a mainstream language.

Future mainstream hardware will likely contain all three basic kinds of
cores, because many applications have all these kinds of code in the same
program, and so naturally will run best on a heterogeneous computer that
has all these kinds of cores. For example, most PS3 games, all Kinect games,
and all CUDA/OpenCL/C++AMP applications available today could not
run well or at all on a homogeneous machine, because they rely on running
parts of the same application on the CPU(s) and other parts on specialized
cores. Those applications are just the beginning.

Memory Architectures

The horizontal axis shows six common memory architectures. From left to
right, they form a continuum of increasing performance and scalability, but
(except for one important discontinuity) also increasing work for programs
and programmers to deal with performance issues (yellow) or correctness
issues (red). In the blown-up figure, triangles represent cache and lower box-
es represent RAM. A processor core (ALU) sits at the top of each cache
“peak.”

http://herbsutter.files.wordpress.com/2011/12/image29.png

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 13 of 34http://herbsutter.com/welcome-to-the-jungle/

Unified memory is tied to the unicore motherlode and the memory hierar-
chy is wonderfully simple – a single mountain with a core sitting on top.
This describes essentially all mainstream computers from the dawn of com-
puting until the mid-2000s. This delivers a simple programming model:
Every pointer (or object reference) can address every byte, and every byte is
equally “far away” from the core. Even here, programmers need to be con-
scious of at least two basic cache effects: locality, or how well “hot” data fits
into cache; and access order, because modern memory architectures love se-
quential access patterns. (For more on this, see my Machine Architecture
talk.)

NUMA cache retains a single chunk of RAM, but adds multiple caches. Now
instead of a single mountain, we have a mountain range with multiple
peaks, each with a core on top. This describes today’s mainstream multi-core
devices. Here we still enjoy a single address space and pretty good perfor-
mance as long as different cores access different memory, but programmers
now have to deal with two main additional performance effects: locality mat-
ters in new ways because some peaks are closer to each other than others
(e.g., two cores that share an L2 cache vs. two cores that share only L3 or
RAM), and layout matters because we have to keep data physically close to-
gether if it’s used together (e.g., on the same cache line) and apart if it’s not
(e.g., to avoid the ping-pong game of false sharing).

NUMA RAM further fragments memory into multiple physical chunks of
RAM, but still exposes a single logical address space. Now the performance
valleys between the cores get deeper, because accessing RAM in a chunk not
local to this core incurs a trip across the bus. Examples include bladed
servers, symmetric multi-processor (SMP) desktop computers with multiple
sockets, and newer GPU architectures that provide a unified address space
view of the CPU’s and GPU’s memory but leave some memory physically
closer to the CPU and other memory closer to the GPU. Now we add another
item to the menu of what a performance-conscious programmer needs to
think about: copying. Just because we can form a pointer to anything doesn’t

http://video.google.com/videoplay?docid=-4714369049736584770

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 14 of 34http://herbsutter.com/welcome-to-the-jungle/

mean we always should, if it means reaching across an expensive chasm on
every access.

Incoherent and weak memory makes memory be by default unsynchro-
nized, in the hope that allowing each core to have its own divergent view of
the state of memory can make them run faster, at least until memory must

inevitably be synchronized again. As of
this writing, the only remaining main-
stream CPUs with weak memory mod-

els are current PowerPC and ARM processors (popular despite their memo-
ry models rather than because of them; more on this below). This model still
has the simplicity of a single address space, but now the programmer further
has to take on the burden of synchronizing memory himself.

Clarification: By “weak (hardware) memory model” CPUs I mean specifical-
ly ones that do not natively support efficient sequentially consistent atomics,
because on the software side programming languages have converged on
the strong “sequential consistency for data-race-free programs” (SC-DRF,
roughly aka DRF0 or RCsc) as the default (C11, C++11) or only (Java 5+)
supported software memory model for software. Hardware that supports
weaker memory models than that are permanently disadvantaged and will
either become stronger (as ARMv8 is now doing by adding SC acquire/re-
lease instructions) or atrophy. The two main hardware architectures with
what I called “weak” memory models were ARMv7 and POWER. ARMv8 is
upgrading to SC acquire/release, as predicted, and it remains to be seen
whether POWER will upgrade or atrophy. I’ve seen some call x86 “weak”,
but x86 has always been the poster child for a strong hardware memory mod-
el in all of our software memory model discussions for Java, C, and C++ dur-
ing the 2000s. Therefore it’s clear that “weak” and “strong” are not useful
terms because they mean different things for software and hardware memo-
ry models, and I’ve updated the text to clarify this.

Disjoint (tightly coupled) memory bites the bullet and lets different cores

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 15 of 34http://herbsutter.com/welcome-to-the-jungle/

see different memory, typically over a shared bus, while still running as a
tightly-coupled unit that has low latency and whose reliability is still evalu-
ated as a single unit. Now the model turns into a tightly-clustered group of
mountainous islands, each with core-tipped mountains of cache overlooking
square miles of memory, and connected by bridges with a fleet of trucks ex-
pediting goods from point to point – bulk transfer operations, message
queues, and similar. In the mainstream, we see this model used by 2009-2011
vintage GPUs whose on-board memory is not shared with the CPU or with
each other. True, programmers no longer enjoy having a single address
space and the ability to share pointers, but in exchange we have removed the
entire set of programmer burdens accumulated so far and replaced them
with a single new responsibility: copying data between islands of memory.

Disjoint (loosely coupled) is the cloud where cores spread out-of-box into
different rooms and buildings and datacenters. This moves the islands far-
ther apart, and replaces the bus “bridges” with network “speedboats” and
“tankers.” In the mainstream, we see this model in HaaS cloud computing
offerings; this is the commoditization of the compute cluster. Programmers
now have to arrange to deal with two additional concerns, which often can
be abstracted away by libraries and runtimes: reliability as nodes can come
and go, and latency as the islands are farther apart.

Charting the Hardware

All three trends are just aspects of a
single trend: filling out the chart and
enabling heterogeneous parallel com-
puting. The chart wants to be filled out
because there are workloads that are
naturally suited to each of these boxes,

though some boxes are more popular than others.

To help visualize the filling-out process more concretely, why not check to

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 16 of 34http://herbsutter.com/welcome-to-the-jungle/

see how mainstream hardware has progressed on this chart? The easiest
place to start is the long-standing mainstream CPU and more recent GPU:

From the 1970s to the 2000s, CPUs started with simple single cores and
then moved downward as the pendulum swung to increasingly com-
plex cores. They hugged the left side of the chart by staying single-core

as long as possible, but in 2005
they ran out of room and turned
toward multi-core NUMA cache
architectures.
Meanwhile, in the late 2000s,
mainstream GPUs started to be ca-
pable of handling computational

workloads. But because they started life in an add-on discrete GPU card
format where graphics-specific cores and memory were physically locat-
ed away from the CPU and system RAM, they started further upward
and to the right (Specialized / Disjoint (local)). GPUs have been moving
leftward to increasingly unified views of memory, and slightly down-
ward to try to support full mainstream languages (e.g., add exception
handling support).
Today’s typical mainstream computer includes both a CPU and a dis-
crete or integrated GPU. The dotted line in the graphic denotes cores
that are available to a single application because they are in the same de-
vice, but not on the same chip.

Now we are seeing a trend to use CPU and specialized (currently GPU) cores
with very tightly coupled memory, and even on the same die:

In 2005, the Xbox 360 sported a multi-core CPU and GPU that could not
only directly access the same RAM, but had the very unusual feature
that they could share even L2 cache.
In 2006 and 2007, the Cell-based PS3 console sported a single processor
having both a single general-purpose core and eight special-purpose

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 17 of 34http://herbsutter.com/welcome-to-the-jungle/

SPU cores. The solid line in the
graphic denotes cores that are on
the same chip, not just in the same
device.
In June 2011 and November 2011,
respectively, AMD and NVIDIA
launched the Fusion and Tegra 3

architectures, multi-core CPU chips that sported a compute-class GPU
(hence extending vertically) on the same die (hence well to the left).
Intel has also shipped the Sandy Bridge line of processors, which in-
cludes an integrated GPU that is not yet as compute-capable but contin-
ues to grow. Intel’s main focus has been the MIC effort of more than 50
simple general-purpose x86-like cores on the same die, expected to be
commercially available in the near future.

Finally, we complete the picture with cloud HaaS:

In 2008 and 2009, Amazon, Microsoft, Google, and other vendors began
rolling out their cloud compute of-
ferings. AWS, Azure, and GAE
support an elastic cloud of nodes
each of which is a traditional com-
puter (“big-core” and loosely cou-
pled, therefore on the bottom right
corner of the chart) where each

node in the cloud has a single core or multiple CPU cores (the two low-
er-left boxes). As before, the dotted line denotes that all of the cores are
available to a single application, and the network is just another bus to
more compute cores.
Since November 2010, AWS also supports compute instances that con-
tain both CPU cores and GPU cores, indicated by the H-shaped virtual
machine where the application runs on a cloud of loosely-coupled nodes
with disjoint memory (right column) each of which contains both CPU

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 18 of 34http://herbsutter.com/welcome-to-the-jungle/

and GPU cores (currently not on the same die, so the vertical lines are
still dotted).

The Jungle

Putting it all together, we get a noisy profusion of life and color:

This may look like a confused mess, so let’s notice two things that help make
sense of it.

First, every box has a workload that it’s best at, but some boxes (particularly
some columns) are more popular than others. Two columns are particularly

less interesting:

Fully unified memory models are only
applicable to single-core, which is be-

ing essentially abandoned in the mainstream.
Incoherent/weak hardware memory models (those that do not efficient-
ly support sequential consistency for data race free programs, roughly

http://herbsutter.files.wordpress.com/2012/01/image7.png

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 19 of 34http://herbsutter.com/welcome-to-the-jungle/

aka DRF0 or RCsc) are a performance experiment that is in the process
of failing in the marketplace. On the hardware side, the theoretical per-
formance benefits that come from letting caches work less synchronous-
ly have already been largely duplicated in other ways by mainstream
processors having stronger memory models. On the software side, all of
the mainstream general-purpose languages and environments (C, C++,
Java) have largely rejected weak memory models, and require a coher-
ent model that is technically called “sequential consistency for data race
free programs” as either their only supported memory model (Java) or
their default memory model (ISO C++11, ISO C11). Nobody is moving
toward the middle vertical incoherent/weak memory strip of the chart;
at best they’re moving through it to get to the other side, but nobody
wants to stay there. (Note: x86 has always been considered a “strong”
hardware memory model and supports sequentially consistent atomics
efficiently, as does the recently-announced ARMv8 architecture with its
new ldra and strl instructions; POWER and ARMv7 notoriously do not
support SC atomics efficiently.)

But all other boxes, including all rows (processors), continue to be strongly
represented, and we realize why that’s true – because different parts of even
the same application naturally want to run on different kinds of cores.

Second, let’s clarify the picture by highlighting and labeling the two regions
that hardware is migrating toward:

http://rsim.cs.illinois.edu/Pubs/08PLDI.pdf

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 20 of 34http://herbsutter.com/welcome-to-the-jungle/

Here again we see the first and fourth columns being deemphasized, as
hardware trends have begun gradually coalescing around two major areas.
Both areas extend vertically across all kinds of cores – and the most impor-
tant thing to note is that these represent two mines, where the area to the left
is the Moore’s Law mine.

Mine #1: “Scale in” = Moore’s Law. Local machines will continue to
use large numbers of heterogeneous local cores, either in-box (e.g., CPU
with discrete GPU) or on-die (e.g., Sandy Bridge, Fusion, Tegra 3). We’ll
see core counts increase until Moore’s Law ends, and then stabilize core
counts for individual local devices.
Mine #2: “Scale out” = distributed cloud. Much more importantly, we
will continue to see a cornucopia of cores delivered via compute clouds,
either on-premises (e.g., cluster, private cloud) or in public clouds. This
is a brand new mine directly enabled by the lower coupling of disjoint
memory, especially loosely coupled distributed nodes.

http://herbsutter.files.wordpress.com/2012/01/image8.png

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 21 of 34http://herbsutter.com/welcome-to-the-jungle/

The good news is that we can heave a sigh of relief at having found another
mine to open. The even better news is that the new mine has a far faster
growth rate than even Moore’s Law. Notice the slopes of the lines when we
graph the amount of parallelism available to a single application running on
various architectures:

The bottom three lines are mining Moore’s Law for “scale-in” growth, and
their common slope reflects Moore’s wonderful exponent, just shifted up-
ward or downward to account for how many cores of a given size can be
packed onto the same die. The top two lines are mining the cloud (with
CPUs and GPUs, respectively) for “scale-out” growth – and it’s even better.

If hardware designers merely use Moore’s Law to deliver more big fat cores,
on-device hardware parallelism will stay in double digits for the next
decade, which is very roughly when Moore’s Law is due to sputter, give or
take about a half decade. If hardware follows Niagara’s and MIC’s lead to go
back to simpler cores, we’ll see a one-time jump and then stay in triple digits.
If we all learn to leverage GPUs, we already have 1,500-way parallelism in
modern graphics cards (I’ll say “cores” for convenience, though that word

http://herbsutter.files.wordpress.com/2011/12/image36.png

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 22 of 34http://herbsutter.com/welcome-to-the-jungle/

means something a little different on GPUs) and likely reach five digits in
the decade timeframe.

But all of that is eclipsed by the scalability of the cloud, whose growth line is
already steeper than Moore’s Law because we’re better at quickly deploying
and using cost-effective networked machines than we’ve been at quickly
jam-packing and harnessing cost-effective transistors. It’s hard to get data on
the current largest cloud deployments because many projects are private or
secret, but the largest documented public cloud apps (which don’t use
GPUs) are already harnessing over 30,000 cores for a single computation. I

wouldn’t be surprised if undocument-
ed projects are exceeding 100,000 cores
today. And that’s general-purpose
cores; if you add GPU-capable nodes to
the mix, add two more zeroes.

Such massive parallelism, already
available for rates of under $1,300/hour for a 30,000-core cloud, is game-
changing. If you doubt that, here is a boring example that doesn’t involve
advanced augmented reality or spook-level technomancery: How long will it
take someone who’s stolen a strong password file (which we’ll assume is
correctly hashed and salted and contains no dictionary passwords) to re-
trieve 90% of the passwords by brute force using a publicly available GPU-
enabled compute cloud? Hint: An AWS dual-Tesla node can test on the or-
der of 20 billion passwords per second, and clouds of 30,000 nodes are pub-
licly documented (of course, Amazon won’t say if it has that many GPU-en-
abled nodes for hire; but if it doesn’t now, it will soon). To borrow a tired
misquote, 640 trillion affordable attempts per second should be enough for
anyone. But if that’s not enough for you, not to worry; just wait a small num-
ber of years and it’ll be 640 quadrillion affordable attempts per second.

What It Means For Us: A Programmer’s View

http://www.usnews.com/usnews/biztech/gatesivu.htm

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 23 of 34http://herbsutter.com/welcome-to-the-jungle/

How will all of this change the way we write our software, if we care about
harnessing mainstream hardware performance? The basic conclusions echo
and expand upon ones that I proposed in “The Free Lunch is Over”:

Applications will need to be at least massively parallel, and ideally
able to use non-local cores and heterogeneous cores, if they want to
fully exploit the long-term continued exponential growth in compute
throughput being delivered both in-box and in-cloud. After all, soon the
vast majority of compute cores available to a mainstream application
will be non-local.
Efficiency and performance optimization will get more, not less, im-
portant. We’re being asked to do more (new experiences like sensor-
based UIs and augmented reality) with less hardware (constrained mo-
bile form factors and the eventual plateauing of scale-in when Moore’s
Law ends). In December 2004 I wrote: “Those languages that already
lend themselves to heavy optimization will find new life; those that
don’t will need to find ways to compete and become more efficient and
optimizable. Expect long-term increased demand for performance-ori-
ented languages and systems.” This is still true; witness the resurgence
of interest in C++ in 2011 and onward, primarily because of its expres-
sive flexibility and performance efficiency. A program that is twice as
efficient has two advantages: it will be able to run twice as well on a lo-
cal disconnected device especially when Moore’s Law can no longer de-
liver local performance improvements in any form; and it will always be
able to run at half the power and cost on an elastic compute cloud even
as those continue to expand for the indefinite future.
Programming languages and systems will increasingly be forced to
deal with heterogeneous distributed parallelism. As previously pre-
dicted, just basic homogeneous multicore has proved to be a far bigger
event for languages than even object-oriented programming was, be-
cause some languages (notably C) could get away with ignoring objects
while still remaining commercially relevant for mainstream software de-
velopment. No mainstream language, including the just-ratified C11

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 24 of 34http://herbsutter.com/welcome-to-the-jungle/

standard, could ignore basic concurrency and parallelism and stay rele-
vant in even a homogeneous-multicore world. Now expect all main-
stream languages and environments, including their standard libraries,
to develop explicit support for at least distributed parallelism and prob-
ably also heterogeneous parallelism; they cannot hope to avoid it with-
out becoming marginalized for mainstream app development.

Expanding on that last bullet, what are some basic elements we will need to
add to mainstream programming models (think: C, C++, Java, and .NET)?
Here are a few basics I think will be unavoidable, that must be supported ex-
plicitly in one form or another.

Deal with the processor axis’ lower section by supporting compute
cores with different performance (big/fast, slow/small). At minimum,
mainstream operating systems and runtimes will need to be aware that
some cores are faster than others, and know which parts of an applica-
tion want to run on which of those cores.
Deal with the processor axis’ upper section by supporting language
subsets, to allow for cores with different capabilities including that
not all fully support mainstream language features. In the next decade,
a mainstream operating system (on its own, or augmented with an extra
runtime like the Java/.NET VM or the ConcRT runtime underpinning
PPL) will be capable of managing cores with different instruction sets
and running a single application across many of those cores. Program-
ming languages and tools will be extended to let the developer express
code that is restricted to use just a subset of a mainstream programming
language (e.g., the restrict() qualifiers in C++ AMP; I am optimistic that
for most mainstream languages such a single language extension will be
sufficient while leveraging existing language rules for overloading and
dispatch, thus minimizing the impact on developers, but experience will
have to bear this out).
Deal with the memory axis for computation, by providing distributed
algorithms that can scale not just locally but also across a compute

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 25 of 34http://herbsutter.com/welcome-to-the-jungle/

cloud. Libraries and runtimes like OpenCL and TBB and PPL will be ex-
tended or duplicated to enable writing loops and other algorithms that
run on large numbers of local and non-local parallel cores. Today we
can write a parallel_for_each call that can run with 1,000x parallelism on
a set of local discrete GPUs and ship the right data shards to the right
compute cards and the results back; tomorrow we need to be able to
write that same call that can run with 1,000,000,000x parallelism on a set
of cloud-based GPUs and ship the right data shards to the right nodes
and the results back. This is a “baby step” example in that it just uses lo-
cal data (e.g., that can fit in a single machine’s memory), but distributed
computation; the data subsets are simply copied hub-and-spoke.
Deal with the memory axis for data, by providing distributed data
containers, which can be spread across many nodes. The next step is
for the data itself to be larger than any node’s memory, and (preferably
automatically) move the right data subsets to the right nodes of a dis-
tributed computation. For example, we need containers like a distribut-
ed_array or distributed_table that can be backed by multiple and/or re-
dundant cloud storage, and then make those the target of the same dis-
tributed parallel_for_each call. After all, why shouldn’t we write a sin-
gle parallel_for_each call that efficiently updates a 100 petabyte table?
Hadoop enables this today for specific workloads and with extra work;
this will become a standard capability available out-of-the-box in main-
stream language compilers and their standard libraries.
Enable a unified programming model that can handle the entire chart
with the same source code. Since we can map the hardware on a single
chart with two degrees of freedom, the landscape is unified enough that
it should be able to be served by a single programming model in the fu-
ture. Any solution will have at least two basic characteristics: First, it
will cover the Processor axis by letting the programmer express lan-
guage subsets in a way integrated holistically into the language. Second,
it will cover or hide the Memory axis by abstracting the location of data,
and copying data subsets on demand by default, while also providing a

http://hadoop.apache.org/

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 26 of 34http://herbsutter.com/welcome-to-the-jungle/

way to take control of the copying for advanced users who want to opti-
mize the performance of a specific computation.

Perhaps our most difficult mental adjustment, however, will be to learn to
think of the cloud as part of the mainstream machine – to view all these local
and non-local cores as being equally part of the target machine that executes
our application, where the network is just another bus that connects us to

more cores. That is, in a few years we
will write code for mainstream ma-
chines assuming that they have mil-
lion-way parallelism, of which only
thousand-way parallelism is guaran-
teed to always be available (when out
of WiFi range).

Five years from now we want to be delivering apps that run well on an iso-
lated device, and then just run faster or better when they are in WiFi range
and have dynamic access to many more cores. The makers of our operating
systems, runtimes, libraries, programming languages, and tools need to get
us to a place where we can create compute-bound applications that run well
in isolation on disconnected devices with 1,000-way local parallelism… and
when the device is in WiFi range just run faster, handle much larger data
sets, and/or light up with additional capabilities. We have a very small taste
of that now with cloud-based apps like Shazam (which function only when
online), but yet a long way to go to realize this full vision.

Exit Moore, Pursued by a Dark Silicon Bear

Finally, let’s return one more time to the end of Moore’s Law to see what
awaits us in our near future, and why we will likely pass through three dis-
tinct stages as we navigate Moore’s End.

Eventually, our tired miners will reach the point where it’s no longer eco-
nomically feasible to operate the mine. There’s still gold left, but it’s no

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 27 of 34http://herbsutter.com/welcome-to-the-jungle/

longer commercially exploitable. Recall that Moore’s Law has been interest-
ing only because we have been able to transform its raw resource of “more
transistors” into one of two useful forms:

Exploit #1: Greater throughput. Moore’s Law lets us deliver more tran-
sistors, and therefore more complex chips, at the same cost. That’s what
will let us continue to deliver more computational performance per chip
– as long as we can find ways to harness the extra transistors for compu-
tation.
Exploit #2: Lower cost/power/size. Alternatively, Moore’s Law lets us
deliver the same number of transistors at a lower cost, including in a
smaller area and at lower power. That’s what will let us continue to de-
liver powerful experiences in increasingly compact and mobile and em-
bedded form factors.

The key thing to note is that we can expect these two ways of exploiting
Moore’s Law to end, not at the same time, but one after the other and in that
order.

Why? Because Exploit #2 only relies on the basic Moore’s Law effect, where-
as the first relies on Moore’s Law and the ability to use all the transistors at
the same time.

Which brings us to one last problem down in our mine…

The Power Problem: Dark Silicon

http://herbsutter.files.wordpress.com/2011/12/image37.png

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 28 of 34http://herbsutter.com/welcome-to-the-jungle/

Sometimes you can be hard at work in a mine, still productive, when a small
disaster happens: a cave-in, or striking water. Besides hurting miners, such
disasters can render entire sections of the mine unreachable. We are now starting
to hit exactly those kinds of problems.

One particular problem we have just begun to encounter is known as “dark
silicon.” Although Moore’s Law is still delivering more transistors, we are los-
ing the ability to power them all at the same time. For more details, see Jem
Davies’ talk “Compute Power With Energy-Efficiency” and the ISCA’11 pa-
per “Dark Silicon and the End of Multicore Scaling” (alternate link).

This “dark silicon” effect is like a Shakespearian bear chasing our doomed
character offstage. Even though we can continue to pack more cores on a
chip, if we cannot use them at the same time we have failed to exploit
Moore’s Law to deliver more computational throughput (Exploit #1). When
we enter the phase where Moore’s Law continues to give us more transistors
per die area, but we are no longer able to power them all, we will find our-
selves in a transitional period where Exploit #1 has ended while Exploit #2
continues and outlives it for a time.

This means that we will likely see the following major phases in the “scale-
in” growth of mainstream machines. (Note that these apply to individual
machines only, such as your personal notebook and smartphone or an indi-
vidual compute node; they do not apply to a compute cloud, which we saw
belongs to a different “scale-out” mine.)

Exploit #1 + Exploit #2: Increasing performance (compute throughput)
in all form factors (1975 – mid-2010s?). For a few years yet, we will see
continuing increases in mainstream computer performance in all form
factors from desktop to smartphone. As today, the bigger form factors
will still have more parallelism, just as today’s desktop CPUs and GPUs
are routinely more capable than those in tablets and smartphones – as
long as Exploit #1 lives, and then…

http://developer.amd.com/afds/assets/keynotes/Compute_Power_with_Energy-Efficiency_Jem_AMD_v1.1.pdf
http://www.cs.utexas.edu/~hadi/doc/paper/2011-isca-darksilicon.pdf
ftp://ftp.cs.utexas.edu/pub/dburger/papers/ISCA11.pdf

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 29 of 34http://herbsutter.com/welcome-to-the-jungle/

Exploit #2 only: Flat performance (compute throughput) at the top
end, and mid and lower segments catching up (late 2010s – early
2020s?). Next, if problems like dark silicon are not solved, we will enter
a period where mainstream computer performance levels out, starting at
the top end with desktops and game consoles and working its way
down through tablets and smartphones. During this period we will con-
tinue to use Moore’s Law to lower cost, power, and/or size – delivering
the same complexity and performance already available in bigger form
factors also in smaller devices. Assuming Moore’s Law continues long
enough beyond the end of Exploit #1, we can estimate how long it will
take for Exploit #2 to equalize personal devices by observing the differ-
ence in transistor counts between current mainstream desktop machines
and smartphones; it’s roughly a factor of 20, which will take Moore’s
Law about eight years to cover.
Democratization (early 2020s? – onward). Finally, this democratization
will reach the point where a desktop computer and smartphone have
roughly the same computational performance. In that case, why buy a
desktop ever again? Just dock your tablet or smartphone. You might
think that there are still two important differences between the desktop
and the mobile device: power, because the desktop is plugged in, and
peripherals, because the desktop has easier access to a bigger screen and
a real keyboard/mouse – but once you dock the smaller device, it has
the same access to power and peripherals and even those differences go
away.

Speaking of Smartphones Pocket Tablets and Democratization

Note that the word “smartphone” is already a major misnomer, because a
pocket device that can run apps is not primarily a phone at all. It’s primarily
a general-purpose personal computer that happens to have a couple of built-
in radios for cell and WiFi service – making the “traditional cell phone” ca-
pability just an app that happens to use the cell radio, and the Skype “IP
phone” capability on the same device just another similar app that happens

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 30 of 34http://herbsutter.com/welcome-to-the-jungle/

to use the WiFi radio instead.

The right way to think about even today’s mobile landscape is that there are
not really “tablets” and “smartphones”; there are just page-sized tablets and

pocket-sized tablets, both already
available with or without cellular ra-
dios, and that they run different oper-
ating systems today is just a point-in-
time effect.

This is why those people who said an iPad is just a big iPhone without the
cellular radio had it exactly backwards – the iPhone (3G or later, which al-
lows apps) is a small iPad that fits in your pocket and happens to have a cel-
lular radio in order to obsolete another pocket-sized device. Both devices are
primarily tablets – they minimize hardware chrome and “turn into” the full-
screen immersive app, and that’s the closest thing you can get today to a
morphing device that turns into a special-purpose device on demand.
(Aside: It’ll be great when we figure out how to get past the flat-glass-pane
model to let the hardware morph too, initially just raised bumps so we can
feel where the keys and controls are, and then eventually more; but hard-
ware morphing is a separate topic and flat glass is plenty fine for now.)
Many of us routinely use our “phones” mostly as a small tablet – spending
most of our time on the device running apps to read books, browse news,
watch movies, play games, update social networks, and surf the net. I al-
ready use my phone as a small tablet far more often than I use it as a phone,
and if you have an app-capable phone then I’ll bet you already do that too.

Well before the end of this decade, I expect the most likely dominant main-
stream form factor to be “page-sized and pocket-sized tablets, plus docking”
– where “docking” means any means of attaching peripherals like keyboards
and big screens on demand, which today already encompasses physical
docks and Bluetooth and “Play To” connections, and will only continue to
get more wireless and more seamless.

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 31 of 34http://herbsutter.com/welcome-to-the-jungle/

This future shouldn’t be too hard to imagine, because many of us have al-
ready been working that way for a while now: For the past decade I’ve rou-
tinely worked from my notebook as my primary and only environment; usu-
ally I’m in my home office or work office where I use a real keyboard and
big screens by docking the notebook and/or using it via a remote-desktop
client, and when I’m mobile I use it as a notebook. In 2012, I expect to replace
my notebook with an x86-based modern tablet and use it exactly the same
way.

We’ve seen it play out many times:

Many of us used to carry around both a PalmPilot and a cell phone, but
then the smartphone took over the job of the dedicated PalmPilot and
eliminated a device with the same form factor.
Lots of kids (or their parents) carry a hand-held gaming device and a
pocket tablet (aka “smartphone”), and we are seeing the decline of the
dedicated hand-held gaming device as the pocket tablet is taking over
more and more of that job.
Similarly, today many of us carry around a notebook and a dedicated
tablet, and convergence will again let us eliminate a device with the
same form factor.

Computing loves convergence. In general-purpose personal computing (like
notebooks and tablets, not special-purpose appliances like microwaves and
automobiles that may happen to use microprocessors), convergence always
happily dooms special-purpose devices in the long run, as each device either
evolves to take over the other’s job or gets taken over. We will continue to
have distinct pocket-sized tablets and page-sized tablets for a time because
they are different form factors with different mobile uses, but even that may
last only until we find a way to unify the form factors (fold them?) so that
they too can converge.

Summary and Conclusions

http://www.asymco.com/2011/11/16/the-end-of-the-dedicated-portable-device/

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 32 of 34http://herbsutter.com/welcome-to-the-jungle/

Mainstream hardware is becoming permanently parallel, heterogeneous,
and distributed. These changes are permanent, and so will permanently af-
fect the way we have to write performance-intensive code on mainstream ar-
chitectures.

The good news is that Moore’s “local scale-in” transistor mine isn’t empty
yet; it appears the transistor bonanza will continue for about another decade,
give or take a half decade or so, which should be long enough to exploit the
lower-cost side of the Law to get us to parity between desktops and pocket
tablets. The bad news is that we can clearly observe the diminishing returns
as the transistors are decreasingly exploitable – with each new generation of
processors, software developers have to work harder and the chips get more
difficult to power. And with each new crank of the diminishing-returns

wheel, there’s less time for hardware
and software designers to come up
with ways to overcome the next hur-
dle; the motherlode free lunch lasted 30

years, but the homogeneous multicore era lasted only about six years, and
we are now already overlapping the next two eras of hetero-core and cloud-
core.

But all is well: When your mine is getting empty, you don’t panic, you just
open a new mine at a new motherlode, operate both mines for a while, then
continue to profit from the new mine long-term even after the first one final-
ly shuts down and gets converted into a museum. As usual, in this case the
end of one dominant wave overlaps with the beginning of the next, and we
are now early in the period of overlap where we are standing with a foot in
each wave, a crew in each of Moore’s mine and the cloud mine. Perhaps the
best news of all is that the cloud wave is already scaling enormously quickly
– faster than the Moore’s Law wave that it complements, and that it will out-
live and replace.

If you haven’t done so already, now is the time to take a hard look at the de-

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 33 of 34http://herbsutter.com/welcome-to-the-jungle/

sign of your applications, determine what existing features – or, better still,
what potential and currently-unimaginable demanding new features – are
CPU-sensitive now or are likely to become so soon, and identify how those
places could benefit from local and distributed parallelism. Now is also the
time for you and your team to grok the requirements, pitfalls, styles, and id-
ioms of hetero-parallel (e.g., GPGPU) and cloud programming (e.g., Amazon
Web Services, Microsoft Azure, Google App Engine).

To continue enjoying the free lunch of shipping an application that runs well
on today’s hardware and will just naturally run faster or better on tomor-
row’s hardware, you need to write an app with lots of juicy latent parallel-
ism expressed in a form that can be spread across a machine with a variable
number of cores of different kinds – local and distributed cores, and
big/small/specialized cores. The filet mignon of throughput gains is still on
the menu, but now it costs extra – extra development effort, extra code com-
plexity, and extra testing effort. The good news is that for many classes of
applications the extra effort will be worthwhile, because concurrency will let
them fully exploit the exponential gains in compute throughput that will
continue to grow strong and fast long after Moore’s Law has gone into its
sunny retirement, as we continue to mine the cloud for the rest of our ca-
reers.

Acknowledgments

I would like to particularly thank Jeffrey Barr, David Callahan, Olivier
Giroux, Yossi Levanoni, Henry Moreton, and James Reinders, who gracious-
ly made themselves available to answer questions to provide background in-
formation, and who shared their feedback on appropriately mapping their
companies’ products on the processor/memory chart.

Update History

2012-08-02: Updated to clarify that by “weak (hardware) memory model”

3/12/13 1:10 PMWelcome to the Jungle | Sutter’s Mill

Page 34 of 34http://herbsutter.com/welcome-to-the-jungle/

CPUs I mean specifically ones that do not natively support efficient sequen-
tially consistent (SC) atomics, because on the software side programming
languages have converged on the strong “sequential consistency for data-
race-free programs” (SC-DRF, roughly aka DRF0 or RCsc) as the default
(C11, C++11) or only (Java 5+) supported software memory model for soft-
ware. Hardware that supports weaker memory models than that are perma-
nently disadvantaged and will either become stronger (as ARMv8 is now do-
ing by adding SC acquire/release instructions) or atrophy. The two main
hardware architectures with what I called “weak” memory models were AR-
Mv7 and POWER. ARMv8 is upgrading to SC acquire/release, as predicted,
and it remains to be seen whether POWER will upgrade or atrophy. I’ve
seen some call x86 “weak”, but x86 has always been the poster child for a
strong hardware memory model in all of our software memory model discus-
sions for Java, C, and C++ during the 2000s. Therefore it’s clear that “weak”
and “strong” are not useful terms because they mean different things for
software and hardware memory models, and I’ve updated the text to clarify
this.

